
Cognitive Aspects of Object-Oriented Programming

Andreas Schwill

Fachbereich Mathematik/Informatik - Universität Paderborn

D-33095 Paderborn - Germany

email: schwill@uni-paderborn.de

Abstract

Computer science education in schools is still mainly based on the imperative programming paradigm

via Pascal, but there are also many proposals how to teach the functional, predicative or object-

oriented style. All these approaches share the (reasonable) implicit assumption that one or two of

the non-imperative paradigms have to be included into lessons in order to give students a correct

view of current computer science activities. Most authors, however, leave open which paradigm to

start with; moreover, they do not consider students’ psychological prerequisites necessary to

comprehend these paradigms. In this paper we will focus on the object-oriented paradigm solely

from the learner’s perspective and show that this paradigm is consistent with the natural way of

human thinking, and therefore particularly suitable for teaching computer science at an introductory

level.

Keywords: Cognition, Programming

Programming styles in computer science education - A new edition of the language controversy?

In the seventies it was disputed with passion which programming language is most suitable for

computer science education in schools. This language controversy was settled by stressing in lessons

the „correct way of thinking“; the final transfer of a solution obtained by the correct way of thinking

into a programming language was considered merely a technical process that could not negatively

influence the systematic progress of the students any more (ignoring the Sapir-Whorf thesis).

The current situation is somewhat similar to the former with the matter in dispute lying on a metalevel

instead: What is the correct way of thinking embodied by the corresponding programming paradigm,

i.e. is it imperative, functional, predicative or object-oriented thinking? Presumably, this controversy

may be settled as before by shifting it to a metalevel and thus suspending it until again several

metalevels have been identified and discussion concerning the best metalevel will be resumed.

While computer science education in school is still dominated by the imperative paradigm, there

are several approaches to introduce also the other three paradigms. Most authors argue that these

paradigms play or will play such an important role in software development that they have to be

included, at least in part, into lessons in order to give students a correct view of the current evolution

of computer science. This generally accepted claim, however, leaves open which language or

paradigm seems most suitable at the introductory level, since it does not take into account that

different paradigms require different intellectual prerequisites and abilities of students as well as

different curricular approaches which may hinder lessons to some extent, as shown by the following

example.

Example

Introductory education in imperative programming using Pascal is often unsatisfying, since students

have to learn many different language concepts in advance before they are able to write a nontrivial

program. This situation makes great demands on the teacher in keeping students motivated.

With a predicative approach using Prolog this seems not a problem, since Prolog’s few concepts

will enable students to write powerful programs even at an early stage. However, Yazdani [6] has

shown that programming in Prolog needs high cognitive abilities with respect to logical thinking,

modelling parts of the real world by logic and comprehending Prolog’s virtual machine.

In this paper we favor an object-oriented approach to introduce into computer science for two

reasons. On the one hand this paradigm meets the demands for a modern education with powerful

concepts, such as encapsulation, inheritance, evolutionary software development by extension,

adaptation and reconfiguration of solutions already available etc., and on the other hand it seems in

line with cognitive processes that are performed in the human brain during perceiving, thinking and

problem solving, as will be shown in the rest of the paper.

Objects in mind and programming

Adults as well as little children show the typical human behaviour to judge things by what they can

be used to. A screwdriver, for example, is a tool for handling screws; as an instance of a class with

more general properties like „long“ and „sharp“ it may also be used as a crowbar, chisel, drill or

stabbing weapon. Conversely, one distinguishes several subclasses with more specific properties:

screwdrivers for cheese-head screws, for cross-head screws, with equipment to check the electric

tension etc.

There has been much research on childrens’ [5] and adults’ [2] perception of objects and representation

of knowledge in memory and how this knowledge is used to guide one’s decisions and actions. All

these results reveal that identification of objects seems to depend more on actions that are possible

with them than on their nature such as color or shape. This behaviour of humans is illustrated in

Tab. 1 which shows the analogy between concepts of object-oriented programming and a standard

model of cognitive psychology based on categories [4] or schemas [1] being large, complex units

that organize much of human knowledge and behaviour. From the programming perspective these

units may be considered as classes.

Example: Duncker’s candle problem and its object-oriented interpretation

The following experiment [3] illustrates these results: Several subjects alone in a room had to solve

the problem to fix three candles at a wall and enlight them. On a table there were few things that the

subjects could use to solve the problem. Among these mostly useless things there were also some

that could be used for the solution: tacks, matches and three little cardboard boxes about the size of

a matchbox. Solution of the problem: Each cardboard box is tacked to the wall and serves as a basis

for the candles. Then the candles are enlighted and fixed on the boxes with some wax.

Subjects had to solve this problem starting from two slightly different situations: For persons of the

first group the cardboard boxes were filled with the experimental material, the first one with candles,

the second with matches and the third with tacks. For persons of the second group the boxes were

empty and the material was scattered on the table.

Surprisingly, the second group solved the problem more often and more quickly than the first

group. Duncker explains this observation as follows: The first group perceives the boxes as containers

for candles, tacks and matches. Subsequently, this function „container“ is so closely bound to the

boxes that subjects can hardly loose their thinking from it and are unable to use the boxes for

different purposes, namely as a place for the candles. Duncker calls this phenomenon functional

fixedness. The second group perceives the boxes unbound to any particular function and is thus

able to use them freely even for unusual purposes.

From the point of view of computer science subjects’ thinking is obviously object-oriented: First of

all objects are divided into classes depending on what operations they permit. A box is considered

by the first group as an object belonging to a class „box“ with operations like „open“, „close“, „is

empty“ or „is full“. These operations determine the subsequent thinking and inhibit this group to

recognize that boxes also belong to a superclass with more general properties like „flat“ and „cuboid-

shaped“ and operations such as „stack“ or „can things lie on it“. Fig. 1 shows a definition following

Oberon, Fig. 2 a treelike representation of the class hierarchy of the boxes which subjects might

probably have had in mind. Now, functional fixedness may be considered as the lack of intellectual

ability to switch between different levels of the hierarchy.

Recommendations for computer science education

In this paper we wished to motivate that object-oriented programming might be a better approach

for teaching computer science at an introductory level, since it reflects fundamental cognitive

processes of humans. However, it is not enough to just start education with an object-oriented

language. Learning outcome also depends heavily on the programming environment that should

make visible the object-oriented approach, i.e. provide clear visualizations of objects which students

can analyze interactively and playfully for what can be done with them, as well as manipulate,

combine, reconfigurate and extend. Systems that come close to this philosophy are, for instance,

HyperCard at the introductory level and Smalltalk-80 at a more advanced level.

Further empirical research with respect to the precise psychological prerequisites, the best language

and its programming environment and the curricular approach are necessary.

References

[1] Anderson, J.R.: Cognitive psychology and its implications. Freeman 1980

[2] Bruner, J.S.; Goodnow, J.J.; Austin, G.A.: A study of thinking. Wiley 1956

[3] Duncker, K.: Zur Psychologie des produktiven Denkens. Springer 1966

[4] Glass, A.L.; Holyoak, K.J.; Santa, J.L.: Cognition. Addison-Wesley 1979

[5] Piaget, J.: The origins of intelligence in children. Intern. University Press 1952

[6] Yazdani, M.: Artificial intelligence, powerful ideas and children’s learning. Computers,

Cognition and Development (J. Rutkowska, C. Crook, eds.) (1987) 99-114

object-oriented view Example psychological view

class dog category/schema

definition by attributes: definition by attributes:

- variables has 4 legs - perceptual attributes

- methods can bark - functional attributes

- inheritance - relational attributes

-- single A dog is not a cat -- categories may be

mutually exclusive

-- multiple dogs and cats -- categories may overlap

may be pets

Tab. 1

type object = record
has a spatial extension;
you can take hold of it;
has color and shape;
...

end;

type cuboid-shaped = record (object)
has length, width, height;
...

end;

type flat-cuboid = record (cuboid-shaped)
height≤5cm;
can be stacked;
you can lie something on it;
...

end;

type box = record (flat-cuboid)
can be opened;
can be closed;
is empty or filled with ...;
...

end.

Fig. 1

object

flat-cuboid

box

...

... ...

...

... ...

cuboid-
shaped

perspective of
group 1 subjects

perspective of
group 2 subjects

Fig. 2

