
Applying Creativity in CS High School Education –
Criteria, Teaching Example and Evaluation

Ralf Romeike
University of Potsdam

Department of Computer Science
A.-Bebel-Str. 89

14482 Potsdam, Germany
romeike@cs.uni-potsdam.de

Abstract
This paper describes an innovative method for teaching
computer science in general high school education,
illustrated with the example of introductory programming.
Analyzing the literature in CS education research we
found that creativity is rarely regarded, especially in high
school education; although a few authors describe
promising results from applying creativity. We designed
and applied a framework for designing creative CS
lessons based on a set of creativity criteria. The conducted
teaching unit on introductory programming fulfilled the
expectations: the students learned with high motivation
and interest, the learning objectives were met and the
students’ picture of CS improved

Keywords: Programming, creativity, learning, teaching,
motivation, high school computer science

1 Introduction
Computer science nowadays has taken an important
position in German high school education and is
represented as a mandatory or elective subject in almost
all secondary schools1.. The role of the subject is not to
educate young computer scientists or programmers, but to
provide the students with a positive attitude towards IT
systems and a confident, responsible use of IT in the
information society, and to allow the students an insight
into the science itself. Even though the students arrive
being more and more familiar with computers and with a
general positive attitude towards them, CS has to deal
with problems: low motivation, decreasing interest in the
‘core’ fields of CS such as programming, low grades, low
participation of female students and the transfer of a
wrong image of CS in schools. This in continuation has
an additional impact on CS studies at university: students

1 In the German education system secondary education starts –
depending on the federal state – with the 5th class (age 10) or 7th
class (age 12). Students aiming for the Abitur, which is a pre-
requisite for higher education, attend the secondary II finishing
after 12th or 13th class. CS lessons are offered to students
starting from 7th, 9th or 11th class.

Copyright © 2008, Australian Computer Society, Inc. This
paper appeared at the Seventh Baltic Sea Conference on
Computing Education Research (Koli Calling 2007), Koli
National Park, Finland, November 15-18, 2007. Conferences in
Research and Practice in Information Technology, Vol. 88.
Raymond Lister and Simon, Eds. Reproduction for academic,
not-for-profit purposes permitted provided this text is included.

often enter with a wrong perception of CS and drop out
early (Romeike & Schwill 2006). These problems stand
in sharp contrast to some out-of-classroom observations
where students and professionals spend a large amount of
their free time dealing with programming or other aspects
of CS. A key factor for engaging with programming
seems to be creativity. In a study about the motivation of
open source programmers, creativity-related factors were
found to be the most pervasive drivers (Lakhani & Wolf
2005). In an interview with an outstanding motivated
student of CS, creativity was also named as the most
important factor for engaging in programming (Romeike
2006). The school subject of CS, as we see it, is strongly
connected with creativity and can make use of it in
manifold ways. Being creative fosters motivation and
interest in the field, the subject of CS offers a fertile
ground for creativity as the concepts and tools are well
understandable and structured, and the omnipresent IT is
beneficial for creativity (Romeike 2007c, Shneiderman
2000, Clements 1995, Thomas et al. 2002). One possible
way that creativity can be applied in the classroom is
described in this paper. After defining creativity and the
consideration of it in previous research in CS education,
we describe criteria for designing creative CS lessons.
Based on these criteria a creativity framework is
presented and applied in a lesson example for
introductory programming, which was performed and
evaluated in a German high school. The evaluation and
the results are discussed.

2 Creativity
The term creativity is used with different meanings and is
discussed controversially in psychology. Common speech
usually defines something as creative when it comes from
the arts or is something extraordinary. But not only artists
can be creative. Everyday life requires creativity – and so
does CS. There is agreement in psychology that
something is creative if it is new, original and useful.
How can an educator expect new and original
achievements from his students? Boden (1990) describes
two aspects of creative achievements. Historical
creativity (h-creativity) describes ideas that are novel and
original in the sense that nobody has had them before.
Something that is fundamentally novel to the individual
Boden describes as psychologically creative (p-
creativity). In an educational context the latter is more
interesting and can be aimed for in the classroom. Thus
the difference between an exceptionally creative person
and a less creative person is not a special ability. It is

based on a larger knowledge in a practical and applied
form as well as on the will to acquire and use that
knowledge. With that in mind, in this paper we call
something creative if it leads to personal new, unique and
useful ideas, solutions or insights (cp. Runco & Chand
1995, Kaufman & Sternberg 2007). As summarized by
Fasko (2000), in the classroom creativity can enhance
learning through improved motivation, alertness,
curiosity, concentration and achievement.

3 Creativity in CS Education
Computer science, as computer scientists see it, is a
creative field to work in (e.g. Leach 2005, Glass 2006).
Hence it is astounding that creativity is rarely reflected in
CS education research. Even today, a search of the
keyword ‘creativity’ in the ACM Digital Library returns
only a few papers related to education. These papers can
generally be assigned to a few groups in the contexts of
problem solving, problem finding, motivation, and
improving lessons and ICT to support creative practice.

Scragg et al. (1994) argue that CS is a fundamentally
creative endeavor. Students need to be encouraged to
discover insights in the creative process of problem
solving. Hill (1998) describes open-ended problem
solving and design processes in technology education as
creative processes that engage exploration. She suggests
moving away from making models to making prototypes
for real-life contexts. In contrast, popular concepts for the
school subject of CS are focusing especially on making
models and yet leave out their implementation
(Hubwieser 2000).

Some authors call attention to the field of problem
finding/posing/identifying, which involves creativity and
is important in the field of computer science. In the lesson
context it is not limited to finding completely new
problems, but includes also reformulating given or
existing ones (Lewis et al. 1998, Kaasbøll 1998). Sutinen
and Tarhio (2001) suggest it is better to speak about
problem management than problem solving, as computer
experts need skills that include problem recognizing and
formulating.

A case study on the use of game programming in CS
education was performed by Long (2007). She found that
“being able to solve problems on my own” and “to be
able to be creative” were the most important factors
influencing intrinsic motivation.

Gu and Tong (2004) found, in an empirical study, that in
software development courses the students perceived
architecture design and programming as creative and that
these phases were preferred. For similar reasons some
authors employ creativity as a factor for raising
motivation and interest in CS lessons. This was done by,
amongst others
• changes in the environment and encouraging

creative, hands-on learning and exploration into the
projects in a data structures and algorithms course
(Lewandowski et al. 2005)

• letting students choose and process their own
problems (Meisalo et al. 1997)

• allowing programming as personal creative
expression (Peppler & Kafai 2005, Resnick 2002)

• presenting programming in an entertaining
discovering way (Wilson 2004)

Resnick (2007) sees creative thinking skills as critical for
success and satisfaction in today’s society. He reports that
in computer clubhouses a creative use of the computer
and programming is learned by promoting to students a
spiral cycle of imagining, creating, playing, sharing,
reflecting, and back to imagining. This he describes to be
ideally suited to the needs of the 21st century.

Some researchers report achieving a positive effect on
students’ performance by applying creativity techniques
in CS courses (Epstein 2006) or using creative methods
for teaching programming (Chaytor and Leung 2003).

Several authors in CS education call for creativity,
because
• Graduates in CS are missing creativity and problem-

solving skills (Mittermeir 2000)
• Creativity is underrepresented in the curriculum

(Sweeney 2003)
• Women drop out because there is no room for

individual creativity in CS courses (Guzdial &
Soloway 2002)

• Creative abilities are seen as the highest form of
literacy, including computer literacy (Van Dyke
1987)

Computers have been found to be a fertile tool for
supporting creativity. Many articles address IT support
for creative practice, however there are just a few related
to computer science education in schools (e.g. Clements
1995).

In summary these works show a broad spectrum of
examples where creativity was identified to be beneficial
and where creativity was successfully applied for
enhancing learning. It is therefore quite surprising that the
opportunities offered by creativity are not more
frequently applied in general computer science education.
It seems promising to us to investigate what the
application of creativity can do for high school CS
education.

In an analysis of the relevant literature we investigated
the application of and the possibility of creativity in
published computer science lesson examples (Romeike
2007a). We found that creativity was rarely employed.
However, the lessons analyzed offered chances to do so
and could be extended to creative lessons when
considering creativity factors. Apparently teachers even
partly prefer non-creative students, as they are easier to
handle in the classroom2. Such a teacher attitude
encourages students to prefer familiar ways that seem

2 “Anyhow I am afraid that students let their creativity play too
much so that the results of this project would be of limited
usefulness.” (Janneck 2006).

safe and risk free but do not leave much space for
creativity3.

We consider the role of creativity in CS from two
perspectives. First, we believe that creativity is essential
to CS. Second, CS makes it easy to be creative. Keeping
in mind the relevance of creativity for CS and its value
for CS education may help educators to overcome some
common problems they experience in the classroom.

Formulated creativity criteria will help teachers in
planning lessons and regarding the creativity potential
that CS offers.

4 Criteria for Creative CS Lessons4
To obtain a foundation for creative CS lessons, we set up
a catalogue of criteria based on findings in the literature
of psychology and education. These criteria can be used
for designing and evaluating computer science lessons.
They reflect and combine general pedagogical principles
that are essential and beneficial for creative practices in
CS education. In addition they consider typical tasks and
principles that are common in CS.

4.1 Requirements for the Subject
Relevance. We define the subject of a lesson as the topic
that is used for illustrating the teaching matter. As
creativity requires personal involvement it needs to be
appealing and thus relevant to the students, or needs to be
presented that way.

Problem management or creation of a product.
Gardner (1993) classified five types of creative activities.
Two of those are typical for CS and should be aimed for
in creative lesson phases: problem solving and the
creation of a product. This includes the implementation of
a model, not just the finding of a theoretical solution.

4.2 Requirements for Tasks
Subjective novelty. This important criterion for
creativity is often overlooked by teachers who use tasks
very similar to those that have been discussed in detail in
the lesson. Even if it is unlikely that a student will come
up with a general new solution or product, subjectively
new (p-creative) ones should be aimed for.

Openness in possible results, approaches and solution
methods. Creative processes are characterized by aspects
of problem finding and creative problem solving,
exploring and discovering. This is possible only if tasks
allow several approaches to the problem, diverse

3 Taking risks is difficult for creative students because creativity
is not always rewarded with good grades (Sternberg & Lubart
1991). Perhaps this is due to the negative attitudes teachers hold
towards creative students, as evidenced by the findings of
Westby and Dawson (1995).
4 A detailed derivation and explanation of the criteria were
performed in (Romeike 2007a).

solutions, and solutions that can differ in the degree of
elaboration.

Application of concept knowledge. A solid foundation
of knowledge is essential to creative practice. In a
creative lesson phase, concept knowledge needs to be
emphasized in contrast to product knowledge or factual
knowledge.

Inspiration. A creative achievement is always preceded
by a stimulus. Type, content, formulation or
circumstances of a task and learning situation can provide
such an initiation. For CS lessons this includes revealing
to the students, for example, what a piece of software will
be used for and which ‘broader’ problems it is supposed
to solve.

4.3 Student-oriented Requirements
Identification. Creative practice may get a person
enthused, getting him or her deeply involved with a task,
and may trigger a flow-condition. Fundamental for this is
that the person can identify himself with the task. For CS
lessons this implies that the content needs to be (or can
become) meaningful to the student, e.g. by taking over
responsibility and/or later presentation.

Originality. Every student is a unique individual with his
or her own ideas, visions and preferences. Obeying this
criterion means allowing space for a student’s originality
demands, i.e. letting the student bring in a personal touch.

4.4 Requirements for the Teaching
Environment

Experimenting. Being creative means to experiment
with ideas, to explore the space of possibilities and to test
solution possibilities. A tool used should provide
meaningful feedback; for example, the compiler of a
programming environment supports experimenting in CS
lessons as it gives detailed feedback to the learner.

Freedom in time. Creativity is hard to realize under time
pressure, as time is needed to gather, evaluate and realize
ideas. Projects in CS lessons support this criterion.

Climate of diversity. Group pressure, early evaluation
and expected perfection are known to oppress creativity.
Instead the lesson should allow encouragement and
inspiration among students. New ideas should be
welcome and diverse solutions supported and presented.

Teacher as a coach. The teacher needs to diminish the
leading role of transferring knowledge, correcting and
assessing. Instead the teacher assists only where a
problem cannot be solved by a student himself. He
motivates and encourages the students.

5 Introduction to Programming by Applying
Creativity Criteria

The question of how programming should be introduced
is a central issue of computer science classes in schools
over and over again. But universities as well as schools
struggle to provide students with a smooth transition into
the field of computer science. Often these introductory

courses and topics are found to be the cause for computer
science being seen as hard, mechanistic or even
uninteresting or discouraging (Bergin 2005, Curzon 1998,
Mamone 1992, Rich et al. 2004, Tharp 1981, Feldgen
2003). We believe it does not need to be this way. The
chance to develop software using a programming
language can nicely demonstrate that computer systems
can be shaped by the student in a motivating way.

For the realization of a lesson example which is
motivating and encouraging for the students, and at the
same time allows for learning about computer science
close to the subject, the criteria for creative computer
science lessons were regarded and applied. The lesson
example was designed for introducing an 11th class of
computer science in a German high school to
programming. As a programming language and creativity
supporting tool the visual programming language Scratch
(Maloney 2004) was used. The application of the
creativity criteria results in a creativity framework that
was followed in the teaching unit and ensured that all of
the criteria could be given due regard. The framework is
described as follows, and illustrated by details of the
lessons. The teaching unit in detail can be found at
(Romeike 2007b). The educational objectives of the
teaching unit are summarized in Figure 1.

5.1 The Creativity Framework

5.1.1 Motivation for New Concepts of
Programming

Motivation is an essential part of teaching. Receiving
students’ attention and fostering motivation was
supported by showing the use and relevance of the
contents to the students and by choosing topics that are
meaningful to them, e.g. animating their name or a story
of their everyday life or imagination, and the
development of games that can be played by them. Often
new concepts were brought up by the students themselves
after discovering and applying them in their projects
before they were formally introduced.

5.1.2 Laying out the Fundamentals
The introduction of new content was done by applying a
building block metaphor. Attributes and uses of the
programming concepts in the Scratch programming
language were discovered or explained. Beneficial for
this view is the visual representation of CS concepts in
Scratch as blocks that can be snapped together. In this
way students learn an appropriate visual representation of
the concepts and do not have to deal with syntax errors,
as they are not possible. As a teaching method, the
concepts were introduced either by the teacher, by work
sheets or by student presentations.

5.1.3 Inspiration
It is essential for a creative lesson to provide an
inspiration to the students, generally by showing an
example program or brainstorming about possibilities.
This allows the students to spark their creativity, to
balance what they may want to achieve and what they

can achieve with the concepts learned so far and what the
programming language is capable of.

5.1.4 Challenging the Students
Challenging the students was done with open-ended tasks
with variable solution complexity and independent
working time for the students. The tasks assigned were
basically pointing the students in a direction given a
general framework of what to do. Thus the students had
to solve a problem they needed to clarify for themselves
up front (“What do I want to do?”). There was no single
right solution that needed to be achieved (openness) and –
as time allowed – the solution could be elaborated as
wanted or as possible for the students. Tasks were, for
instance, “Design a program that displays your name and
animates the letters to interact with the mouse or
keyboard!”

This way the students could get familiar with the
concepts they had just learned, explore the programming
environment, find solutions for their ideas, and
implement and test them. The teacher would go around,
encourage the students to explore the possibilities, and
intervene only if asked or needed. Usually such a working
period ended with the end of a lesson. This way those
students who wanted to elaborate their work or to extend
or modify their programs could continue to do so at
home.

5.1.5 Presentation and Reflection
Finally the students uploaded their programs to the
Scratch webpage and a few programs were presented to
the rest of the class at the beginning of the next lesson.
Presentation of the work included presentation and
discussion of ideas, problems and strategies. If students
discovered and applied new concepts in their program
they explained them to the rest of the class.

At the end of the course every student was asked to
develop his own game, with the only condition being that
all of the learned concepts should be applied. The task
resulted in a variety of computer games ranging from

o Basic understanding of programming
o Algorithms:

• Characteristics (finiteness, clarity, feasibility,
general validity)

• What can be solved algorithmically?
o Basic concepts of programming:

• Sequence
• Loops
• Decisions
• Variables (local/global)

o Input and output of data
o Arithmetic operations and comparison operators
o Representation of algorithms as Scratch blocks
o Object, message, attributes, methods
o Reading and analyzing programs
o Modifying and extending of programs
o Designing, implementing and testing of programs
o Idea generation and problem management

Figure 1: Educational objectives

pong and memory to sport and shooting games.

5.2 Scratch
The visual programming (mini) language Scratch was
originally designed for young students to develop 21st
century skills (Maloney 2004). It allows creating
animations, games and other programs by ‘clicking
together’ programming constructs represented as building
blocks. Nevertheless, due to its intuitive appearance and
usability it is used in computer club houses, high schools
and even in introductory programming college courses.
We chose Scratch because it emphasizes the practical
learning of fundamental CS concepts and at the same
time supports the idea of fostering creativity in CS
classes. Mini languages are said to provide an insight into
programming and teach algorithmic thinking for general
computer science in an intuitive, simple, but powerful
way (Brusilovsky et al. 1997). Thus Scratch meets the
needs for the intended purpose.

6 Evaluation

6.1 Method
The attempt to introduce programming was done in
parallel in two courses of the school. Parallel to the
author conducting a lesson as described above (A), the
other course (B) was taught by an experienced teacher
following a ‘traditional’5 problem-solving oriented
approach. The problem-solving approach was performed
by using the tool ‘Robot Karol’ and followed suggested
learning tasks as provided with a schoolbook for CS
education (Engelmann 2004).

Course A consisted of 21 students, aged 17, with 38%
female students. Course B consisted of 23 students of the
same age with 61% female students. The students’ prior
experience in computer science was comparable.

The accompanying evaluation was following two
questions. First, if creativity is explicitly considered, what
effect does this have on the students’ motivation, interest,
and picture of the school subject of CS? Second, what is
the impact on the students’ task understanding and
achievement? As a research instrument for the first
question, a questionnaire was used; for the second, the
average grades of the students before and after the course,
and a test following the course.

The questionnaire was structured the following way:
1. Scale-based responses to statements about computer

science lessons in general, e.g. “CS lessons are
fun/interesting/creative”, “I participate / I am
distracted”, “I show results at home”

2. Questions about difficulty, amount of content and
appropriateness of the last teaching unit

3. Appraisal of teaching techniques, methods and tools

5 As a ‘traditional’ problem-solving approach we consider
the way a majority of teachers introduce programming by
assigning a sequence of convergent problem-solving tasks
with increasing difficulty.

4. Scale-based responses to statements about the topic,
e.g. “I could discover new things”, “I could
concentrate”, “I have the feeling I learned
something”

5. Questions about the perceived learning outcome/
success of the individual and of the learning group

The questionnaire was answered by the students before
and after the 4-week (11-hour) course.

The test following the course contained two sections:
1. Theoretical:

• Definition and characteristics of algorithms
• Describing concepts of programming and giving

an example
2. Practical:

• Explaining and optimizing two programs
presented on paper

• Implementing a program to a given problem
• Implementing a program for a self-chosen task,

applying all used concepts

6.2 Results

6.2.1 Motivation, Interest, Picture of CS
The picture students have of the school subject of
computer science is forming their understanding of the
science in general. Furthermore this is responsible for
students’ motivation and eventually builds the foundation
for the question whether they will consider CS as a
subject to study at university. Humbert (2003)
investigated students’ pictures of CS in his dissertation
research. The subject was seen as the science of
computers and of how to use computers. The chance of
designing and shaping software systems was rarely
reflected. This view did not change much after one year
of CS lessons.

The creativity-teaching unit changed the students’ picture
of CS in many ways, as illustrated in Figure 2, which
shows the change in responses between the start and end
of the course. Fun and interest were raised considerably
(“Computer science is fun” (71% → 93% agreement), “I
regard the content of computer science as interesting”
(29% → 93% agreement)). These factors have a major
impact on the motivation of the students and can be
greatly used for maintaining students’ interest in CS.
Programming was very motivating for the students –
unlike many experiences in the classroom and in

-30%

-20%

-10%

0%

10%

20%

30%

40%

50%

60%

70%

Fun

Und
erst

and
ing

Inter
es

t

Crea
tiv

ity

Im
pre

ss

Dive
rse

 Solu
tio

ns

Exp
eri

men
tin

g

Part
icip

ate

Dist
rac

ted

Figure 2: Agreement compared with before the lesson

introductory programming courses at university, where
programming is often a reason for failure.

Consistent with the teaching approach, a big change
happened in the judgment of creativity. In response to
whether they consider CS lessons as a place where they
can be creative, 93% answered in the affirmative,
compared with 36% before.

Computer science is generally a subject where several
solutions are possible for a task and where
experimentation is also involved in understanding
difficult interrelations. Experimentation is playing an
increasingly important role, e.g. for analyzing the
behavior of software (Reed 2002). Often in school
settings these aspects are not obvious to the students. This
is especially true when teachers need to choose ‘effective’
ways of teaching, such as teacher-centered instruction
with convergent problem-solving tasks to ‘get through the
stuff’ in the shortest time. Here, too, the majority of
students are not aware of these aspects prior to the
creative lessons. Afterwards most agreed that ‘in CS
diverse solutions and solution methods are possible for a
single task’ (43% → 86%) and ‘in CS lessons you
experiment a lot’ (14% → 73%). This increase is
especially interesting as the students in the previous
teaching unit were actually investigating, designing and
experimenting with databases. Apparently, genuine
designing and changing a computer system by
programming in a creative way better meets the students’
understanding of ‘experimenting’ then investigating the
characteristics of a ‘fixed’ system such as a database with
convergent problem-solving tasks.

The creation of presentable products (programs) can also
have an effect on how students’ friends and family
consider CS lessons. From almost none at the beginning
(7%), 40% of the students agreed that they could impress
family or friends with results from the lessons.

Summarizing, the students’ picture of computer science
lessons changed positively. CS lessons in German schools
– and in other parts of the world as well – often differ a
lot from real CS. They are perceived as the subject where
you learn how to use the computer, how to use Word and
Excel and how to use the internet. The students are now
more aware of the reality of CS, as a subject that involves
designing and changing computer systems,
experimenting, and finding a good solution where many
solutions are possible. As high school also needs to
prepare students for university, these factors need to be
considered. Furthermore the ‘technical’ reputation of CS
has caused a gender bias, with girls in particular not
showing much interest. With the creative way of looking
into CS the girls’ interest was also raised and they
enjoyed the tasks. Considering the answers separated by
gender, it is apparent that the girls mostly answered
comparably with the boys.

6.2.2 Understanding, Achievement
The perceived learning outcome was stated as high. The
answers are in accord throughout the class and stand in
contrast to the perceived learning outcome of the previous
teaching unit. There the answers are more diverse, and

half of them include reports of problems. These views are
also reflected in the perceived learning outcome judgment
for the course: 87% believe that all or most of the
students in the class understood the programming content
well or very well. In the previous teaching unit, the
majority of the students checked answers reflecting
problems among their classmates. This is interesting, as
their own reported learning success in ‘databases’ was
generally better than the perceived learning success of the
class. Even if at least half of the students understood the
matter, the class was learning in a climate of problems
and ‘not-understanding’. In the topic of programming,
due to the many ways of presenting the students’ results
and achievements, the classroom climate was a more
positive one. This in turn could motivate the students’
persistence and desire to understand when they
encountered problems.

The effective learning outcomes were measured by a test
concluding the teaching unit. The test was successfully
accomplished by 94% of the participating students. The
course average of the test is 0.2 grades better than the
class average in the first half of the semester and about
one grade better than the average in the test concluding
the previous teaching unit. The grades can be separated
into two groups: 69% received grades ‘good’ (2) or ‘very
good’ (1), 25% ‘satisfactory’ (3) or ‘fair’ (4). Considering
the grades according to gender, all girls received grades
of 2 and better, while the boys’ grades are equally
distributed through the scale. Keeping in mind the
problems many CS and programming courses have with
female students’ achievements, this seems to be an
encouraging outcome.

6.2.3 Additional Results

6.2.3.1 Questions about the lessons

Unfortunately students are generally not used to working
independently in the classroom. Even though pedagogy
has for decades suggested different teaching methods, the
most prominent teaching style in German schools is still
teacher-centered classroom instruction (Meyer 2003).
Applying a new teaching method can be challenging and
troublesome for all participants, as the students may not
be sure about what they are expected to do, and cannot
follow a common familiar schema. In this connection it is
interesting to investigate the perception and the attitude of
the students towards the teaching methods. Students’
answers about the teaching methods, tasks, and lessons
are presented in figure 3.

All students considered the presentation of the learning
content as understandable. This is a desired result, but
still surprising, for two reasons. First, the teacher did not
put much effort into explaining and concretizing the
concepts of programming. More or less anything that was
learned was done so by actively engaging in
programming. Content was presented briefly or collected
together and applied right away. This approach is
supported by the constructionist learning theory (Papert
1980) that encourages learning by design and engaging
students in personal meaningful tasks. Second,
programming is known for being a difficult matter to

teach in schools (many teachers in high schools struggle
for months and even years to teach the basic concepts of
programming). The students here considered the degree
of difficulty as appropriate and perceived their learning
outcome as appropriate or a lot. Asked about how hard
the subject matter was, half of the students responded
‘sometimes easy, sometimes hard’, the other half
‘generally easy’.

Practice time was perceived as adequate, even if the
circumstances put quite some time pressure on the
students. Students appreciated that they could bring their
own ideas. All students considered the tasks as solvable –
even if there was no ‘right’ solution that they needed to
find for the tasks.

The role of the teacher is reflected in the answers to the
question about where the students learned most: by
working at projects (60%) and dealing with the tasks
(60%) in contrast to explanations of the teacher (13%).
Again, it is somewhat surprising that programming, at
least at this elementary level, can be learned so
intuitively.

6.2.3.2 Questions about the topic

The answers about the topic are somewhat ambivalent.
Today’s students grow up surrounded by technology.
Every student in the observed class has a personal
computer at home. Nevertheless less then a third of the
students stated that the topic was dealing with issues out
of everyday life and only 43% of the students think they
can use the learned knowledge in future. These numbers
are even lower than the ratings for the previous teaching
unit. In the classroom the relevance of programming
concepts and the connection to everyday life have not
been explicitly shown to the students by the teacher.
Given the strength of real-life contexts as a major source
of motivation, one would think that the students could
hardly have been motivated for the lesson. Surprisingly,
80% stated that some of the issues had been very
interesting to them, 87% state they learned something,
and 73% said that they had fun with this topic. Obviously
– without being motivated by the topic as being
connected to everyday life – the tasks and the creative
practice were motivating enough for the students to enjoy
and learn.

6.2.4 Comparison with the control group

6.2.4.1 Comparing the questionnaires

Prior to the introduction to programming the curriculum
of both courses consisted of the same topics in computer
science6. The grades of the two courses prior to the
observation were generally comparable.

Comparing the answers of the two courses about their
picture of computer science prior to the introduction to
programming the students answered very much alike. B
had slightly more consent with the item ‘fun’ and a
significantly higher consent with the item
‘understanding’. The rest of the answers are comparable.

This changes tremendously when comparing the answers
after the introduction to programming: fun rose by 22%
in A but declined by 32% in B. Only half of the students
of B considered CS as fun after the programming course.
While programming had an enormous impact on the
interest in CS of the students of A, in B ‘interest’
remained low for 75% of the students. Students of group
B also agreed more on ‘creativity’ after learning about
programming (+18%). This is an interesting fact, showing
that even in the problem-solving approach creativity is
needed, and this also becomes obvious to the learners.
Similar findings are reported by Long (2007). Not all
students in the problem-solving group saw that there are
several ways of solving a given problem. The agreement
with this item rose in B to 63%, while in A it rose to 86%.
The agreements to the statements in comparison with the
control group are illustrated in Figure 4.

6.2.4.2 Comparing the achievements

The course was started in both groups with the same
learning objectives in mind. Unfortunately not all
learning objectives could be achieved in group B.
Variables are not implemented in the tool used in B. Also
characteristics of algorithms were not considered by the
teacher of group B due to a lack of time. Even so, it is
interesting to compare the answers of the students as to
how they perceived their achievements.

6 We will refer to the course with a creative introduction to
programming as A and the course following a problem-solving
approach as B.

Figure 3: Appraisal of teaching methods

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Fun

Unde
rst

an
din

g

Int
ere

st

Crea
tiv

ity

Im
pres

s

Dive
rse

 Solut
ions

Exp
erim

en
tin

g

Part
icip

ate

Dist
rac

ted

A
B

Figure 4: Agreement compared with control group

In the questionnaire both groups had to assess their
learning success. While in A all students stated that it was
appropriate or high, in B only two-thirds of the students
did so. Nevertheless the grades of the following test were
comparable. Both groups considered the difficulty of the
lesson and the complexity similarly (appropriate or high).

Comparing the grades with those of the prior teaching
unit, group A improved a lot while group B on average
remained stable at the grades they had before. But
splitting the grades by gender, the boys of group B
improved their grades while the girls deteriorated. In
contrast to that stand the achievements of group A, where
the girls improved their grades considerably more then
the boys. Before the introduction to programming, the
level was equal for boys and girls in both groups.

6.3 Critical Reflection
There are two drawbacks to this study. First, the lessons
were taught by different teachers. The teaching style, the
teachers’ personalities and the way the teacher gets along
with the class can and will have an effect on the learning
outcome and the students’ motivation. On the other hand,
as was shown by the questionnaire that the students
completed before the observed lessons, motivation and
achievement were equally high in both groups. But as the
tasks and exercises used in the problem-solving approach
have been taken from a school book that has been used by
hundreds of teachers before to introduce programming,
they seem to be quite typical for a course that introduces
programming through problem solving.

Second, the groups had not only a different methodology
but also different software tools. This is perhaps a key
factor, and might be responsible for the rise in motivation
and perceived creativity as well. Nevertheless, the bottom
line stays the same: a creative introduction to
programming is both possible and expedient. If the reason
is the programming language used, it might be wise to
consider creativity when choosing a programming
language. As the creativity criteria fit well with many
pedagogical implications, they should at least be
considered. If the reason for the success of the teaching
unit lies in the application of the creativity factors, it is
even more strongly recommended that these factors be
applied in other teaching settings. Besides, choosing a
programming environment that addresses the students’
interests will be helpful anyway. Scratch is obviously a
candidate for that. We strongly believe that both – the
application of creativity and the creativity support of
Scratch – are responsible for the learning success. Hence
we suggest that creativity be applied to introductory
programming courses, regardless of the programming
language used, but particularly if using Scratch.

Future research needs to address these questions in detail.

7 Conclusion
Analyzing the literature in CS education research we
found that creativity is rarely regarded, especially in high
school education. Promising results from applying
creativity are described by a few authors. We applied a
framework for designing creative CS lessons based on a

set of creativity criteria. The conducted teaching unit in
introductory programming fulfilled the expectations: the
students enjoyed the lessons, the learning objectives were
met and the students’ picture of CS improved. This is in
agreement with studies where contextualization,
personalization, and choice produced dramatic increases
in students’ motivation, in their depth of engagement in
learning, in the amount they learned in a fixed time
period, and in their perceived competence and levels of
aspiration (Cordova and Lepper 1996).

The students’ efforts were concentrated and intrinsically
motivated. Even when a lesson was over, many of them
wanted to remain in the classroom in order to continue
working on their project. The presentation and
dissemination of the students’ results led to increased
motivation in the next lesson. Even another course at the
school was getting to know the results of this course as
many students soon started to play online the games that
they had created.

Female students performed very well in the course and
could engage in tasks they enjoyed. Our initial impression
of a few female students was that they were likely to get
distracted by designing the look of the program and less
interested in focusing on the functionality; for example,
that they would be more interested in making little films
than interactive programs. But as soon as some programs
were presented, challenged by the creative classroom
climate, they caught up and applied the newly learned
concepts as well. Especially contrasting the learning
results to the control group it becomes obvious that
female students performed better in the creative teaching
setting.

Interestingly we found that sometimes it is not easy to
change a firm stereotype of CS, as illustrated by the
following example. After the lessons one student seemed
quite unhappy and uncertain. When she was asked about
what was bothering her she answered that she found the
lessons a bit strange and asked when we would start ‘real’
CS. The experienced lessons in her opinion had been so
“c-r-e-a-t-i-v-e”. In her opinion, other subjects are
supposed to be creative, but not CS. Asked whether she
understood the content and enjoyed the lessons, she said
that she had. The lessons just had not met her pre-
conceived notion of CS.

After these experiences we believe that creativity can and
should be applied in the long run in programming courses
and can possibly serve as a principle in other fields of CS
as well. We would also like to encourage educators of CS
to apply creativity at the university level. The benefits of
increased motivation and interest for all students, but
especially for women, are worth trying and come with a
low risk. Since the beginning CS has been a creative
endeavor (Scragg et al. 1994, Saunders 2005). Let us
show our students what this can mean.

More and more learning environments are developed that
allow a smooth – and creative – introduction to
programming. The full potential that lies in these
powerful tools can be better tapped with regard to
creativity.

In a time where standardized tests are becoming more and
more common, the call for more attention to something
that is seen as ineffective as creativity may seem a little
odd. Nevertheless, the positive outcomes as described
encourage us to further investigate how creativity can be
fostered, at the same time enhancing learning in computer
science education.

8 References
Bergin, S. and Reilly, R. (2005): The Influence of

Motivation and Comfort-Level on Learning to
Program. In Proc. of PPIG 17. University of Sussex,
Brighton UK, 293-304.

Boden, M. A. (1990): The creative mind: myths &
mechanisms. Basic Books, London.

Brusilovsky, P., Calabrese, E., Hvorecky, J.,
Kouchnirenko, A. and Miller, P. (1997): Mini-
languages: a way to learn programming principles.
Education and Information Technologies, 2, 65-83.

Chaytor, L. and Leung, S. (2003): How to creatively
communicate Microsoft.NET technologies in the IT
curriculum. In Proc. of the 4th conference on
Information technology curriculum, Lafayette, Indiana,
USA, 168-173, ACM Press.

Clements, D. H. (1995): Teaching Creativity with
Computers. Educational Psychology Review, 7(2): 141-
161.

Cordova, D. and Lepper, M. (1996): Intrinsic Motivation
and the Process of Learning: Beneficial Effects of
Contextualization, Personalization, and Choice.
Journal of Educational Psychology, 88(4): 715-730.

Curzon, P. and Rix, J. (1998): Why do Students take
Programming Modules? In Proc. of the 6th annual
conference on the teaching and computing and the 3rd
annual conference on integrating technology into CSE:
Changing the delivery of Computer Science Education.
ITICSE ’98. Dublin, Ireland, 59-63.

Engelmann, L. (2004): Informatische Grundbildung,
Paetec, Altenburg.

Epstein, R. G. (2006): An ethics and security course for
students in computer science and information
technology. In Proc. of the 37th SIGCSE technical
symposium on Computer science education, Houston,
Texas, USA, 535-537, ACM Press.

Fasko, D. (2000): Education and creativity. Creativity
Research Journal, 13(3-4): 317-327.

Feldgen, M. and Clua, O. (2003): New motivations are
required for freshman introductory programming. In
Proc. of the 33rd ASSE/IEEE Frontiers in Education
Conference. Boulder, USA, 1: T3C-T24.

Gardner, H. (1993): Creating minds: an anatomy of
creativity seen through the lives of Freud, Einstein,
Picasso, Stravinsky, Eliot, Graham, and Gandhi,
BasicBooks, New York.

Glass, R. L. (2006): Software creativity 2.0, developer .*
Books, Atlanta.

Gu, M. and Tong, X. (2004): Towards Hypotheses on
Creativity in Software Development. Lecture Notes in
Computer Science, 3009: 47-61.

Guzdial, M. and Soloway, E. (2002): Teaching the
Nintendo generation to program. Communications. of
the ACM, 45(4): 17-21.

Hill, A. M. (1998): Problem solving in real-life contexts:
An alternative for design in technology education.
International Journal of Technology and Design
Education, 5(3), 1-18.

Hubwieser, P. (2000): Didaktik der Informatik:
Grundlagen, Konzepte, Beispiele. Springer, Berlin.

Humbert, L. (2003): Zur wissenschaftlichen Fundierung
der Schulinformatik, Pad-Verl., Witten.

Janneck, M. (2006): Partizipative Systementwicklung im
Informatikunterricht. LOG IN 138/139: 60-66.

Kaasbøll, J. J. (1998): Teaching critical thinking and
problem defining skills. Education and information
Technologies, 3(2): 101-117.

Kaufman, J. C. and Sternberg, R. J. (2007): Creativity.
Change: The Magazine of Higher Learning, 39(4): 55-
60.

Lakhani, K. and Wolf, R. (2005): Why Hackers Do What
They Do: Understanding Motivation Effort in
Free/Open Source Software Projects. In Perspectives
on Free and Open Source Software. 3-22. J. Feller, B.
F., S. Hissam, and K. R. Lakhani (eds). MIT Press.

Leach, R. J., Ayers, Caprice A. (2005): The Psychology
of Invention in Computer Science. In Proc. of 17th
Annual Workshop of the PPIG. University of Sussex,
Brighton UK.

Lewandowski, G., Johnson, E. and Goldweber, M.
(2005): Fostering a Creative Interest in Computer
Science. In Proc. of SIGCSE '05. St. Louis, MO.

Lewis, T., Petrina, S. and Hile, A. M. (1998): Problem
Posing-Adding a Creative Increment to Technological
Problem Solving. Journal of Industrial Teacher
Education, 36(1).

Long, J. (2007): Just For Fun: Using Programming
Games in Software Programming Training and
Education - A Field Study of IBM Robocode
Community. Journal of Information Technology
Education, 6: 279-290.

Maloney, B., Kafai, Rusk, Silverman, Resnick (2004):
Scratch: A Sneak Preview. IEEE Computer Society,
104 - 109.

Mamone, S. (1992): Empirical Study of Motivation in an
Entry Level Programming Course. ACM SIGPLAN
Notices, 27(3): 54-60.

Meisalo, V., Sutinen, E. and Tarhio, J. (1997): CLAP:
teaching data structures in a creative way. In Proc. of
the 2nd conference on Integrating technology into
computer science education. Uppsala, Sweden, 117-
119.

Meyer, H. (2003): Unterrichtsmethoden II: Praxisband,
Cornelsen Scriptor, Berlin.

Mittermeir, R. (2000): Informatik-Unterricht: Bastel-
Unterricht, eine intellektuelle Herausforderung oder
"Preparation for the information-age". Medienimpulse,
9/33, 4 – 11.

Papert, S. (1980): Mindstorms : children, computers, and
powerful ideas, Basic Books, New York.

Peppler, K. and Kafai, Y. (2005): Creative Coding:
Programming for Personal Expression.
http://scratch.mit.edu/files/CreativeCoding.pdf.
Accessed 19 Oct 2007.

Reed, D. (2002): The use of ill-defined problems for
developing problem-solving and empirical skills in
CS1 J. Comput. Small Coll. 18(1): 121-133.

Resnick (2002): Rethinking Learning in the Digital Age.
In The Global Information Technology Report:
Readiness for the Networked World. 32-37. Kirkman,
G. (ed). Oxford University Press, Oxford.

Resnick, M. (2007): All I really need to know (about
creative thinking) I learned (by studying how children
learn) in kindergarten. In Proc. of the 6th ACM
SIGCHI conference on Creativity & cognition,
Washington, DC, USA, 1-6, ACM Press.

Rich, L., Perry, H. and Guzdial, M. (2004): A CS1 course
designed to address interests of women. In Proc. of the
35th SIGCSE technical symposium on Computer
science education, Norfolk, Virginia, USA, 190-194,
ACM Press.

Romeike, R. (2006): Creative students - What can we
learn from them for teaching computer science, In A.
Berglund & M. Wiggberg (Eds.) In Proc. of the 6th
Baltic Sea Conference on Computing Education
Research, Koli Calling. Uppsala University, Uppsala,
Sweden. Also available at
http://cs.joensuu.fi/kolistelut/

Romeike, R. (2007a): Kriterien kreativen Informatik-
unterrichts. In Proc. of the 12. GI-Fachtagung
"Informatik und Schule - INFOS 2007". Siegen,
Germany, LNI 112: 57-68. Köllen.

Romeike, R. (2007b): Designing Animations and Games -
A Creative Introduction to Programming: About flying
Elephants, Dogs, Cats and Ideas!
http://www.funlearning.de/. Accessed 19 Oct 2007.

Romeike, R. (2007c): Three Drivers for Creativity in
Computer Science Education. In Proc. of the IFIP-
Conference on "Informatics, Mathematics and ICT: a
golden triangle". Boston, USA.

Romeike, R. and Schwill, A. (2006): "The studies might
be too difficult for me" Intermediate Results of a Long-

term Survey of Computer Science Freshmen. In Proc.
of HDI 2006: Hochschuldidaktik der Informatik.
Munich, P-100: 37-49, Lecture Notes in Informatics.

Runco, M. A. and Chand, I. (1995): Cognition and
Creativity. Educational Psychology Review, 7(3): 243-
267.

Saunders, D. and Thagard, P. (2005): Creativity in
Computer Science. In Creativity across domains:
Faces of the muse (Ed, Baer, J. C. K. a. J.), Lawrence
Erlbaum Associates, Mahwah, NJ.

Scragg, G., Baldwin, D. and Koomen, H. (1994):
Computer science needs an insight-based curriculum.
In Proc. of the twenty-fifth SIGCSE symposium on
Computer science education, Phoenix, Arizona, United
States, 150-154, ACM Press.

Shneiderman, B. (2000): Creating Creativity: User
Interfaces for Supporting Innovation. ACM
Transactions on Computer-Human Interaction, 7(1):
114–138.

Sternberg, R. J. and Lubart, T. I. (1991): Creating
Creative Minds. Phi Delta Kappan, 72, 608-614.

Sutinen, E. and Tarhio, J. (2001): Teaching to identify
problems in a creative way. In Proc. of the Frontiers in
Education Conference, IEEE Computer Society, TID-
8-TID-13vol.1.

Sweeney, R. B. (2003): Creativity in the Information
Technology Curriculum Proposal. In Proc. of the 4th
conference on Information technology curriculum.
Lafayette, Indiana, USA, 139-141.

Tharp, A. L. (1981): Getting more oomph from
programming exercises. SIGCSE Bull., 13(1): 91-95.

Thomas, J. C., Lee, A. and Danis, C. (2002): Enhancing
Creative Design via Software Tools. Communications
of the ACM, 45, 112 - 115.

Van Dyke, C. (1987): Taking “computer literacy”
literally. Communications of the. ACM, 30, 366-374.

Westby, E. L. and Dawson, V. L. (1995): Creativity:
Asset or Burden in the Classroom? Creativity Research
Journal, 8(1): 1-10.

Wilson, B. C. (2004): A study of learning environments
associated with computer courses: can we teach them
better? 20(2): 267 - 273.

